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Slow light deflection in Gaussian pumped atomic medium
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We present the moments formalism theory to study the deflection of the slow signal light in the cold
atomic media, which is under the condition of the Gaussian control laser and electromagnetically induced
transparency. Deflection, the interesting phenomenon on quantum coherence, is testified by analytic and
numerical methods. Results show that, as the signal light propagating in the medium, there would be
an observable deflection before the general diffraction. Influences of the coupling intensity on deflection
phenomenon and the beam waist of the signal light in the medium are also investigated.
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The characterization of the spatial behavior of laser
profiles constitutes a field of current interest[1−8]. As
is well known, the key shape parameters of every laser
source are the minimum beam waist and the far-field
beam divergence, which can be expressed in terms of the
so-called second-order moments of the intensity and ra-
diant intensity of the field. Moments formalism is a pow-
erful tool to derive the propagation laws. In this letter,
we use the moments formalism to study the deflection
phenomena in the cold atomic media.

As an optical phenomenon, deflection has been stud-
ied for ages. Deflection always takes place where there
is an inhomogeneous medium[9], and it can be easily ob-
served in our daily lives. As a result, researchers take
much interest in it and do much work about it. Re-
cently, many researchers found that, under the condition
of external field, the atomic media could be induced to
the inhomogeneous media[10−18]. The gradient refrac-
tive index (GRIN) is induced by magnetic-field-modified
optical pumping[11], while the spatial inhomogeneity of
the refractive index is induced by an expanded Gaussian-
profile pump beam[15−18]. It should be mentioned that,
in Refs. [15-18], since the conditions for electromagneti-
cally induced transparency (EIT)[19,20] are satisfied, the
probe light transmitting in the cold atomic media is very
slow. The deflection of the slow light in atomic media
has been observed experimentally[21,22] and studied in
theory[23]. In Ref. [23], the relations between the deflec-
tion angle, the injection position, and the probe detuning
were illustrated with the semiclassical theory.

In this letter, we investigate the deflection of the slow
light in the cold atomic media by the classical theory.
With the help of the Fresnel propagation program[9], we
can easily gain the analytical expression of propagation
equation, by which the ray path of the signal light and the
real beam-waist can be induced by the moments formal-
ism. Results show that, as the signal light propagating
in the medium, there would be an observable deflection
before the general diffraction. Influences of the coupling
intensity on deflection phenomenon and the beam waist

of the signal light in the medium are also investigated.
In our recent work[15−18], we consider the cold atomic

gas cell composed of Λ-type three-level atoms (Fig. 1).
Under the condition of EIT, the linear susceptibility of
the incident field can be written as[19]
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where ρ is the atomic density, Γ2 and Γ3 are the de-
cay rates of the meta-stable state |2〉 and |3〉, Ωc and
Ωp are Rabi frequencies of control and probe beams, re-
spectively, µ is the electric dipole moment of transition
|1〉 → |3〉. Under the control of the Gaussian beam with
Rabi frequency Ωc(r) = Ω0 exp(−r2/σ2), where σ is the
waist of the control beam, if r2 ¿ σ2, the index distribu-
tion of an EIT medium with a negative frequency detun-
ing (∆p < 0) can be approximated by a GRIN medium
as

n2(x, y) = n2
0[1− g2(x2 + y2)], (2)

where

n0 =
1

Ω0

√
(Ω2

0 + η∆p), (3)

Fig. 1. Closed three-level Λ-type atom.

1671-7694/2010/010115-04 c© 2010 Chinese Optics Letters



116 CHINESE OPTICS LETTERS / Vol. 8, No. 1 / January 10, 2010
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. (4)

In Eqs. (3) and (4), ∆p is the probe detuning, and

η = 4ρµ2/ε0h̄.
Given the light field E0(x0, y0) at a transverse plane

z = 0, the field E(x, y, z) at any plane z > 0 can be
calculated via an integral formula[24,25]:

Ez(x, y, z) =
∫

S

dx0dy0E0(x0, y0)G(x, y, x0, y0, z), (5)

where G(x, y, x0, y0, z) is the propagator,

G(x, y, x0, y0, z) =
kn0g exp(ikn0z)

i2π sin(gz)
exp

[
ikn0g
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+ x2
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0

)]
, (6)

where k = ω/c is the wave number in free space. In free space, n0 = 1 and g = 0, the integral formula becomes the
usual Fresnel integral.

Considering the signal lights as the Gaussian beam

E0(x0) = e−α(x0−a)2 , (7)

for the signal lights incident onto the medium at ~ri = (xi, 0, 0) and along the positive z-axis within the region√
x2 + y2 ¿ σ2, Eq. (5) can be integrated as

Ez(x) = A

√
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+ i
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where A =
kn0geikn0z

i2π sin(gz)
, β =
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2 tan(gz)
, and γ =

kn0g

2 sin(gz)
. In the derivation process, the integral

∫∞
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√

π/a (a > 0) is used. As a result, the
intensity is

Iz(x) = Ez(x) · E∗
z (x)

= |A|2 π√
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exp
[−2α(γx− βa)2

α2 + β2

]
. (9)

In order to describe the beam deflection, we obtain the
beam center by

xc(z) =
∫

xIz(x)dx∫
Iz(x)dx

= βa/γ = a cos(gz)
≈ a(1− g2z2/2). (10)

As to the original position x0 = a, the deflection angle is

θ = ∂x/∂z = −g2az. (11)

Another parameter, the beam waist, can be expressed
as[4]

ω2
c (z) = < (x− xc)2 >
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∫
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2
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In the case of ∆p > 0, based on Eq. (4), g → ig. Ac-
cordingly, cos(gz) → cosh(gz), sin(gz) → i sinh(gz), the
beam center and the deflection angle turn to

xc(z) ≈ a(1 + g2z2/2), (13)

and

θ = g2az. (14)

The beam waist comes with the form of

ω2
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=
4α2 sinh2(gz) + k2n2

0g
2 cosh2(gz)

4αk2n2
0g

2
. (15)

It should be noted that, in order to make the deflection
meaningful, the propagation distance z should not be too
long. So we need gz ¿ π/2, that is

z ¿ π

2g
. (16)

From Eqs. (11) and (14), it is obvious that the deflec-
tion angle increases with the increase of incident position
a. The sign relations of the deflection angle, incident
positions, and probe detuning are shown in Table 1. The
corresponding deflection phenomena were illustrated in
Fig. 2. For a 6= 0, the probe light with red detuning (∆p

< 0) feels an “attractive potential” toward z axis, while
a blue detuned light (∆p > 0) experiences a “repulsive
potential”. In the case of ∆p = 0 or a = 0, no deflection
appears. The above qualitative analysis shows the same
results in Ref. [23].

Table 1. Probe Detuning and Beam Deflection

Deflection Angle a < 0 a > 0

∆p < 0 θ > 0 θ < 0

∆p > 0 θ < 0 θ > 0
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Fig. 2. Deflection phenomena of probe light in the presence
of control light with Gaussian profile. Three cases (∆p < 0,
∆p = 0, and ∆p > 0) are shown in different incident positions
a < 0, a = 0, and a > 0.

Fig. 3. Numerical calculation of the deflection phenomena.
(a) ∆p = 0.5 × 10−6 s−1, a = −σ; (b) ∆p = 0.5 × 10−6 s−1,
a = σ; (c) ∆p = −0.5 × 10−6 s−1, a = σ; (d) ∆p = −0.5 ×
10−6 s−1, a = −σ. Other parameters are Ω0 = 4 × 107 s−1,
η = 4 × 105 s−1, λ = 800 nm, Γ2 = 3 × 103 s−1, Γ3 = 3 ×
107 s−1, and α = 1.

Fig. 4. Normalized intensity distribution of I(x = 0; y; z).

Parameters are σ = 5.0 × 10−4, α =
√

2, and a = 1.4 σ, the
others are the same as those in Fig. 3.

Figure 3 gives the qualitative results of the deflec-
tion. As a comparison, the deflection is numerically
calculated with the help of Eq. (1) and the split-step-
Fourier method[26]. The parameters are Ω0 = 4 × 107

s−1, η = 4 × 105 s−1, λ = 800 nm, Γ2 = 3 × 103 s−1,
Γ3 = 3 × 107 s−1, and α = 1. From Fig. 3, we can
obviously see that, the numerical calculation results are
well consistent with the qualitative results.

Fig. 5. (a) Deflection angle of the probe light varies with
the intensity of the Rabi frequency of the control beam; (b)
magnification of the probe light waist as the function of the
intensity of the Rabi frequency of the control beam. Param-
eters are α = 1, z = 10σ, and a = 0.5σ, the others are the
same as those in Fig. 3.

As mentioned above, the observable deflection appears
just when z ¿ π/2g is satisfied. In order to investi-
gate the general propagation of the slow signal light in
the medium, the normalized intensity distribution of I(x
= 0; y; z) is plotted in Fig. 4. Most parameters are
the same as those in Fig. 3 except for σ = 5.0 × 10−4,
α =

√
2.5, and a = 1.0 σ. From Fig. 4, we can see

that, in the area of z ¿ π/2g (about z ¿ 100σ), the sig-
nal light is deflected by the Gaussian pumped medium.
On the plane of z = 10σ, the deflection angle is about
θ = 3.0× 10−2 rad, which is approximate to the analytic
result θ = 2.5×10−2 rad (calculated by Eq. (11)). While
beyond z ¿ π/2g, with the increase of propagation dis-
tance z, the deflection phenomenon disappears, and it is
replaced by diffraction.

We also do the numerical calculation about the deflec-
tion angle and the waist of the propagating signal light,
as shown in Fig. 5. In Fig. 5, the parameters are α = 1,
z = 10σ, a = 0.5σ, and the others are the same as
those in Fig. 3. In this case, the deflection angle and
the waist of the propagating signal light (expressed as
ωc(z) = (α2 +β2)/4αγ2 ' β2/4γ2 (β À α)) are indepen-
dent of the waist of the control beam. If the ratio of the
beam waist at the position of z to the waist at z = 0 is
defined as

M =
ωc(z)
ωc(0)

, (17)

the deflection angle and the magnification of the probe
light waist varying with the intensity of the Rabi fre-
quency Ω0 of the control beam are illustrated in Fig. 5.
From Fig. 5, we can see that, during the propagating
process, with the increase of Ω0, the deflection becomes
weaker, and the beam waist of the probe gets narrower,
which even can be the same wide as the waist of the probe
(M = 1) at the original position z = 0 .

In conclusion, we firstly assume the cold atomic
medium is under the control of the coupling Gaussian
laser and the condition of the EIT is satisfied. With
the moments formalism theory, the ray path of the slow
light is obtained, as well as the beam waist. Results
show that, as the signal light propagating in the medium,
there would be an observable deflection before the general
diffraction. The influences of the coupling intensity on
deflection phenomenon and the beam waist of the signal
light in the medium are also investigated in this work.
As a potential application, the study on the deflection
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in the coherent atomic medium in this letter will moti-
vate some innovations in quantum storage and quantum
information processing.
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